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ABSTRACT

Both common factor analysis and components analysis are useful techniques

for reducing the number of variables in a data set or for identifying

underlying covariance structures that exist among a set of variables.

Although researchers have for some years debated the appropriateness of

selecting one of these methods over the other, components analysis has

traditionally been the dominant strategy among educational researchers.

Following a brief, simplified overview of the logic of factor analysis, a

review of a number of studies comparing the common factor and principal

components methods is presented. Actual educational research data are used to

demonstrate cases in which the two methods will produce different results. In

addition, guidelines are offered to aid the researcher in determining which

method to employ in specific research situations.
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COMMON FACTOR ANALYSIS OR COMPONENTS ANALYSIS:
AN UPDATE ON AN OLD DEBATE

Factor analysis is an elegant statistical technique that may be used by

the social scientist both in theory development and in the validation of

measures of human behavior and abilities. Consequently, factor analysis has

been described as "one of the most powerful tools yet devised for the study of

complex areas of behavioral scientific concern" (Kerlinger, 1986, p. 689), and

as "the furthest logical development and reigning queen of the correlational

methods" (Cattell, 1978, p. 4). Factor analytic methods allow the researcher

to reduce a set of observed variables to a smaller set of latent variables

exprIssing common dimensions of the observed variable set. Nunnally (1967, p.

289) noted that this data reductive property of factor analysis "is useful in

the explication of constructs." Likewise, Harman (1967, p. 4) noted, "The

chief aim [of factor analytic methods] is to attain scientific parsimony or

economy of description."

Cattell (1978, p. 5) has proposed a two-pronged application of factor

analysis in the behavioral sciences:

One important use of factor analysis is in finding the

"significant dimensions". . .in a jungle of variables. . . .A

second major service of factor analysis is in exposing and

counteracting that vice of the human mind which. . .assumes that

when there is one word [for a given construct] there must be one

thing corresponding to it in the real world.

Despite the general agreement among social science researchers (e.g.,

Booksteir, 1990; Cattell, 1952, 1978; Gorsuch, 1983, 1990; Harman, 1967;

McArdle, 1990; Mulaik, 1972, 1990; Nunnally, 1967; Steiger, 1990; Velicer &
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Jackson, 1990) that factor analysis is an important research tool, there is

considerable controversy regarding the appropriateness of various techniques

for determining factor solutions. More specifically, the controversy centers

around whether principal components analysis (PCA) or common factor analysis

(CFA) is the most appropriate technique to use in research situations

employing structural factor analysis.

The purpose of the present study is to review some of the arguments of

the proponents of PCA and CFA, and to offer some guidelines for the

appropriate choice of method in various research situations. A brief overview

of the logic underlying factor analysis along with a simple heuristic example

is provided for the novice reader. A review of various empirical studies

which have compared PCA and CFA is presented. Finally, several factor

analyses utilizing actual educational research data are presented to

demonstrate cases in which the two methods will produce similar and different

results.

The Logic of Factor Analysis--A Brief Overview

Social scientists (e.g., Cattell, 1952, 1988a; Rummel, 1970) have

conceived of a three-dimensional model (often referred to as a "data box" or

"data cube") for measuring and describing any given psychological or

ideological phenomenon. The three dimensions (called modes) which constitute

this model are generally considered to be persons, variables, and occasions of

measurement (Cattell, 1952). Factor analytic techniques usually involve two

of these three modes, one of which is factored across the other.

In conducting an "R-technique" factor analysis, the most commonly-used

factor analytic technique, the researcher first selects a finite set of 2

r
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variables from a universe of possible variables designed to measure a specific

construct. The choice of variables may be based on theoretical considerations

or on the researcher's own hypothetical notions regarding the nature of the

construct. Data are collected on these variables from a sample of persons

thought to .t representative of the researcher's population of interest. A

square (2 x 2) matrix of association (correlation matrix) is constructed to

determine the intercorrelations among the 2 variables. On the basis of these

correlations, a new rectangular correlation matrix is constructed with the 2

variables serving as the rows and m common factors serving as the columns.

The researcher's goal in R-technique factor analysis is to reproduce as

much of the variance in the original set of 2 variables as possible in m

interpretable factors (m ( 2). By examining the content of the variables

which correlate most highly with each factor (determined by consulting the

factor structure coefficients or "loadings" of each variable with each of the

factors), the researcher then attempts to give a name to each of the m

interpretable factors underlying the original variable set. If the

researcher's goal is theory development, the resultant factors serve as

indicators of the various dimensions underlying the construct the researcher

is endeavoring to measure. If the goal is construct validation of a

psychometric instrument, the factors indicate the various constructs the

instrument is purported to measure.

In "Q-technique" factor analysis, ele most commonly-used alternative to

R, the same two dimensions (variables and people) are used as in R-technique

although they are reversed (Comrey, 1973), i.e., the people are factored

across the variables, yielding "person factors," or clusters of persons who

behave or think differently than persons in other clusters in terms of the
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constructs being measured. Although the present study is limited to

discussion of the R-technique factor analysis, detailed discussions of the

logic underlying Q-technique are provided elsewhere (Kerlinger, 1986;

Stephenson, 1953). A number of research studies in which Q-technique factor

analytic methods have been employed are also available for further study by

the interested reader (e.g., Carr, 1989; Daniel, 1989b; Thompson, 1980;

Townsend, 1987).

As a heuristic example of the logic underlying R-technique factor

analysis, consider a hypothetical research situation involving 10 variables

collected on each of 15 subjects, as presented in Table 1. The square inter-

item correlation matrix of association for these 10 variables is presented in

Table 2, and the rectangular "factor solution" matrix is presented in Table 3.

INSERT TABLES 1, 2, AND 3 ABOUT HERE

An analysis of the factor structure coefficients of the variables with the

identified factors as shown in Table 3 indicates that two distinct factors are

being measured, with Items 1, 5, 6, 7, and 9 correlating highly with Factor I,

and the remaining items correlating highly with Factor II. In an actual

research situation, the next two logical steps would be to examine the items

identified with each factor, and then to name the factors.

Methods for Determining Faci,or Solutions

The most difficult (and perhaps the most subjective) part of conducting a

factor analysis is determining the factor solution. Indeed, some have argued

that factor analysis is so subjective that it should be used with extreme

caution. For instance, Armstrong (1967) in an amusing article subtitled "Tom
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Swift and His Electric Factor Analysis Machine" warned of the danger of

routinely using exploratory factor analysis to drive theory development in

lieu of forming a priori theoretical assumptions about the relationships

among variables. However, as explained by Daniel (1989a), these exploratory

factor analytic methods can be followed up with confirmatory methods which can

directly take into account the a priori relationships among the variables.

At least three processes are involved in determining a factor solution:

(a) selecting from among several mataematical models for determining the

values of factor structure coefficients, (b) determining if and how the factor

results should be rotated, and (c) deciding on the number of factors to

extract and interpret. In the present study, only the first of these three

processes is considered. However, a considerable amount of writing has also

been devoted to the issues of factor rotation (e.g., Cattell, 1978; Gorsuch,

1988; McDonald, 1985; Mulaik, 1972; Nunnally, 1978) and number of factors

(e.g., Cattell, 1966; Kaiser, 1960; Linn, 1968; Zwick & Velicer, 1982, 1986).

Historically, there has been considerable controversy regarding the

appropriateness of various techniques for determining factor solutions.

Spearman's early ideas about mental abilities led to his development of the "G

factor" theory (Spearman, 1904), i.e., the notion that all mental abilities

are ultimately explained by a single general or G factor. Nunnally (1967, P.

334) has explained the G factor theory as follows:

The general factor was thought of as a type of mental yardstick

of intelligence, and only one yardstick was thought necessary to

explain the common ground among all forms of individual

differences in abilities. Thus tests as diverse as tests of

arithmetic, spelling, and the judgment of illusions were thought

S
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to share in G. In addition, it was theorized that each source of

individual differences (test) possessed a unique factor. .

The theory is sometimes called Spearman's two-factor theorY,

because it hypothesized that each test could be explained by a

general factor and a unique factor. (emphasis in original)

Holzinger extended the G factor theory in his development of the

"bifactor" solution (Holzinger, 1941; Holzinger & Swineford, 1937). This

theory hypothesizes that the common variance among a series of tests (or

variables) can be accounted lor by both a general factor and by two or more

"group" factors. Hence, all of the group factors correlate with the G factor,

but not with one another. Nunnally (1967, p. 339) provides a simplified

example of this factor solution.

Hy the 1930's, statisticians were beginning to develop the more

sophisticated factor analytic models used most frequently today. Hotelling

(1936) proposed methods for calculating the principal components solution.

Principal components analysis (PCA) yields linear combinations of observed

variables based upon a referent square matrix of correlation among the

variables with unity values on the matrix diagonal. PCA assumes that the

inter-variable correlation matrix produced by the data from a given sample

perfectly reflects the population correlation matrix. In other words, PCA

assumes that the variables have been collected without error (Gorsuch, 1988).

The analysis yields n principal components from a set of n variables (i.e.,

the number of components equals the number of variables). Generally, the

researcher selects from among these n factors the first several which account

for a major portion of the variance. The selected factors are interpreted and

named, whereas factors with negligible contributions to the variance are

3
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ignored. The result is a "truncated" component solution (Gorsuch, 1988).

In common factor analysis (CFA), the unity diagonal values on the inter-

variable correlation matrix are replaced with communality (h2) estimates of

each variable. As noted by Gorsuch (1978, p. 24), variable communalities are

the correlations of each variable with the "common elements" underlying the

variable set. One frequently-used mathematical analog for determining lower-

bound estimates of the communalities is to compute the squared multiple R of

each variable with all the other variables. Since error variance is included

in any data set, the communality estimates are less than unity in value.

CFA involves the computation of both common and unique factors. For n

variables, there will be n unique factors that explain variance unique to each

variable. CFA generally allows the researcher to extract k common factors for

the n variables such that 1 k I n. As noted by Cureton and D'Agostino

(1983), the number of common factors is generally less than half the number of

variables (k n/2). As each factor is extracted, a resultant "residual"

matrix is calculated. This matrix expresses the relationships among the

variables with the effect of the first factor removed from the analysis. In

the "pure" mathematical model of CFA, factors are extracted until "some

statistical :.-st says the last residual matrix is essentially full or zeros"

(Cattell, 1978, p. 30).

As previously noted, the controversy surrounding various factor analytic

methods has yielded many diverse opinions of the viability of one method over

another. Fairly early in the development of CFA and PCA, Cureton (1939)

responded to the ongoing debates among the "two-factorists," "bi-factorists,"

"multiple-factorists," and "component analysts":

Factor theory may be defined as mathematical rationalization. A
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factor-analyst is an individual with a peculiar obsession

regarding the nature of mental ability or personality. By the

applintion of higher mathematics to wishful thinking, he always

proves that his original fixed idea or compulsion was right or

necessary. In the process he usually proves that all other

factor-analysts are dangerously insane, and that the only

salvation for them is to undergo his own brand of analysis in

order that the true essence of their maladies may be discovered.

(p. 287)

Interestingly, by 1967, one researcher stated, "The heated and inspired

controversies about the 'best' method of factor analysis are over" (Harman,

1967, p. 9). However, even though the old G factor and bi-factor theories are

now outdated, the controversy over common factor analysis and principal

components analysis is very much alive. In fact, Bentler and Kano (1990)

recently noted that the controversy is approximately 50 years old.

One reason for the controversy is the affinitive relationship between the

two methods. Gorsuch (1990, p. 33) notes the similarity and distinction

between the two:

Common factor analysis is the general case of which component

analysis is a special case. Common factor analysis includes

variables with error and variables without error because, in the

latter case, certain elements become zeros. Component analysis

limits this broader model by an additional assumption: the

variables are reproduced without error (i.e., without

uniquenesles or residuals).

According to Acito and Anderson (1980) and Gorsuch (1983), principal
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components analysis is most useful when the number of variables is large and

when variable communalities are relatively high (above 0.40) and homogeneous

in value. As demonstrated by Gorsuch (1983), Harris (1970), and Velicer

(1974, 1976, 1977), when these two assumptions are met, PCA and CFA yield

nearly identical results. "However, with a smaller number of variables, the

values in the diagonal assume greater importance and the loadings in the

resulting factor pattern [using PCA] may tend to be inflated" (Acito &

Anderson, 1980, p. 230).

Considering the problems associated with PCA, many have suggested that

PCA should not be routinely used as a factor analytic procedure (e.g.,

Cureton, 1939; Cattell, 1988b; Gorsuch, 1990; Harman, 1967; McDonald, 1985;

Mulaik, 1990). Cattell (1988b), for instance, notes that for PCA to be

viable, the set of variables under consideration "would have to lie in a

completely self-explanatory subuniverse, self-sufficient as a system entirely

isolated from the rest of the universe. The components model must be

considered a mere mathematical figment" (p. 134). Similarly, McArdle (1990,

p. 81) notes that "PCA is a poor substitute for a more complete and reliable

CFA." Despite these sentiments, PCA remains the preferred method in

behavioral research (Pruzek & Rabinowitz, 1981). This preference may be due

in part to the setting of PCA as the default factor extraction method in many

popular statistical software packages such as SPSSX (Hubbard & Allen, 1987).

In opposition to the many writers who prefer CFA, there are a number of

researchers who adamantly defend the viability of PCA. Chief among the

defenders of PCA are Velicer and his associates. Velicer has sought through

results of a host of empirical studies to show that PCA and CFA rarely produce

notably different results (e.g., Velicer, 1974, 1976, 1977; Velicer &

12
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Jackson, 1990). Wilkinson (1989) concurs with the findings of Velicer, and

further notes that most attempts to discredit the merits of PCA focus upon

mathematical artifacts associated with contrived example data sets. Wilkinson

affirms that when analyzing real data, PCA and CFA generally do not differ

enough to matter.

Others argue for the preference of PCA over CFA on the basis of

parsimony. PCA is more mathematically direct and simple, thus it requires

less computational energy (and less consumption of computer processing units).

Gorsuch (1990), however, points out that elegance in scientific models does

not necessarily always mean mathematical simplicity.

Gorsuch (1988) and Snook and Gorsuch (1989) note that preference of PCA

over CFA, or vice-versa, is often n matter of paradigmatic biases of the

researcher. PCA, notes Gorsuch (1988), follows a mathematical paradigm, i.e.,

it stresses derivation and exact computation of all procedures. CFA, on the

other hand, follows a scientific, or statistical, paradigm. This latter

paradigm stresses the value of estimation and replication of results across

various samples. Preference for the CFA model is noted by McArdle (1990), who

states, "The PCA always overestimates the true loading, and the accuracy of

PCA becomes very poor as the true loadings get smaller. In these math models

the CFA algorlthms are always 100% accurate."

Empirical Comparisons of the Two Methods

A number of researchers have sought to empirically test the convergence

of factor solutions offered by PCA and CFA. A number of these studies (e.g.,

Acito & Anderson, 1980; Borgatta, Kercher, & Stull, 1986; Linn, 1968; Snook &

Gorsuch, 1989; Velicer, Peacock, & Jackson, 1982) have involved the factor

13
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analyzing of Monte Carlo gererated of data. Acito and Anderson (1980)

compared principal components analysis with two common factoring techniques

(image and alpha factoring) using generated data sets of 50, 100, and 300

cases. The results suggested that image and alpha analyses were superior to

principal components analysis in reproducing known factor patterns among

variables. In fact, the Acito and Anderson analyses suggest that image

analysis with 50 cases is almost as accurate as principal components analysis

with 300 cases. In a similar study, Snook and Gorsuch (1989) found that

common factor analysis reproduced known factor structures more accurately than

principal components analysis when factor patterns identified sith generated

data were compared with population factor patterns.

Other comparative studies have involved actual data sets. For instance,

Velicer (1977) compared two CFA techniques with PCA by reanalyzing data from

nine studies. All the studies employed rather large sample sizes and large

numbers of variables. Velicer's comparisons were based on observing

similarities and differences in the factor patterns across the methods and on

a summary statistic a based on summation of the squared differences in

comparable factor structure coefficients across the methods. Velicer

concluded that the patterns produced across the methods were remarkably

similar, with the greastest differences noted in the last (weakest) factor

extracted. A similar comparison study by Wilkinson (1989) confirms the

Velicer findings. Wilkinson concludes that most differences between CFA and

PCA are the result of "overfactoring" of data, i.e., extracting of too many

meaningless factors (p. 456).

Hubbard and Alien (1987) also compared PCA with CFA using actual data,

but their findings were in sharp cont-ist to those of Velicer and Wilkinson.

1 4
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Hubbard and Allen provide empirical evidence across several studies that

illustrates differences in the magnitudes of the factor stru:ture coefficients

using PCA and CFA. In several of the cases, these shifts in coefficients lead

to differences in the interpretation of the factors. Similarly, Gorsuch

(198', illustrated several factor analytic cases using a small number of

variables in which the PCA and CFA methods yielded notably different results.

Without a doubt, the issue of which of these methods, if either, is

superior to the other is far from being resolved. Opponents of PCA have often

used either hypothetical data or else have used a rather small number of

variables as weapons in their factor analytic arsenal. It could be argued

that either of these types of data may lead to distortion of factor analytic

results. On the other hand, PCA advocates often try to explain away the CFA

advocates' arguments by suggesting that factor indeterminacy is responsible

for most of the differences in the two methods.

Consequently, an empirical example is offered as a part of the present

ztudy in order to review and further explore these differences. An actual

data set (Daniel & Okeafor, 1987) involving teachers' perceptions about their

'lin professionalism on a "logic of confidence" scale was factor analyzed using

both PCA and CFA. This data set serves as an interesting factor analytic

example as attitudinal measures are frequently used in educational research.

Method

The data utilized in the following analyses were collected from 70

preservice and inservice teachers using a three-subscale "logic of confidence"

measure authored by Okeafor, Licata, and Ecker (1987). This self-evaluation

measure included 29 Likert-type items. The illustrated data set borders on

being a "problem" data set for factor analytic purposes as the number of

.1 o
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rariables and subjects are below minimal criteria as established by Gorsuch

(1983) and Comrey (1973).

Responses of the 70 subjects on the logic of confidence measure were

factor analyzed using principal components analysis and principal axis factor

analysis. Analyses were run using the SPSSx FACTOR procedure. Two alternate

rules were used for determining the number of factors to extract in comparing

the results of the analyses. The "eigenvalue greater than unity" rule

(Guttman, 1954), was selected as it is a commonly used rule and as it is the

default factor extraction method for many statistical software programs such

as SPSSx. In a second round of analyses, Cattell's (1966) "scree" test was

utilized for determining the number of factors. The scree test relies on a

visual plot of the eigenvalues, with the number of factors to extract

determined by a break in the curve of the line formed by the plotted values.

Generally, scree is a more conservative test, suggesting that response

variance can be adequately accounted for in relatively few factors. All

results were rotated to simple structure using the varimax criterion.

Findings

Principal components and principal axis factor analyses using the default

"eigenvalue greater than unity" extraction rule were run for the data at hand.

Ten factors were extracted for each solution. Initial variable communality

estimates for the principal factor solution were generally high, with only one

of the 29 values falling into the "low" (< .40) range as defined by Gorsuch

(1983), and with nearly all of the communalities (23 of 29) above .50.

Velicer (1977), Snook and Gorsuch (1989), and Hubbard and Allen (1987)

propose several statistics by which various factor patterns may be compared.

1 6
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However, the ability of a model to identify a viable factor structure is the

most strIngent test of a model, and, indeed, the aspect of the model of most

interest to researchers employing factor analysis in empirical research.

Hence, the more highly statistical means of comparing the two models were

rejected for use in the present study in lieu of direct comparison of

identified factor structures using the "eyeball" strategy. More specifically,

the two models were evaluated and compared on the degree to which they

produced factors which were uwiquely saturated with given items. For the

purposes of these comparisons, an item was considered uniquely associated

with a factor if (a) it had a higher factor structure coefficient on that

factor than on any other factor, and (b) its coefficient on that factor

exceeded f.401.

The "unique" items associated with these factors, along with the items'

factor structure coefficients, are presented in Table 4. The two analyses

yielded nearly identical results up through the fourth factor. Factors I and

III, IV, and VI for both analyses included the exact same sets of items, and

Factors II, and V varied by only one item each across the two sole-. )ns.

Factors VIII and IX for the Pa analysis matched Factors VII and liII,

respectively, for the PAF analysis, and PCA Factor X matched PAF Factor IX

with the exception of the former including one additional item. What is most

notably different in the two analyses is the magnitude of the factor structure

coefficients.

Also, each analysis yielded one rather unique factor. The most unique

PCA factor was Factor VII, while Factor X was the most unique PAF factor. It

could be effectively argued, however, that the last five factors on both

analyses are hardly interpretable as most of them correlated adequately with
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only one or two items. These results suggest a problem with overextraction.

The "scree" test indicated a clear break between Factors III and IV;

hence, a three-factor solution was run using each of the extraction methods.

The resultant PCA and PAF factor matrices are presented in Tables 5 and 6,

respectively. The factor structures are very similar. With the exception of

Item 20, each of the items correlated most highly with the same factor across

the two analyses. Again, the most notable difference between the two matrices

was the magnitude of the structure coefficients. Since researchers rarely

interpret items as defining 4 construct when structure %.oefficients are less

than 1.301, a number of items might be omitted from interpretation if

employing the PAF extraction method in the present research situation.

Discussion

The results of the foregoing analyses tend to confirm the assumptions (a)

that the choice between PCA and CFA generally does not make a lot of

difference, and (b) that differences shown by the two methods tend to be based

on overextraction. The comparative ten-factor .3olutions using the two methods

produced relatively similar results up until the seventh factor. By that

point in the analyses, none of the remaining factors in either analysis was

uniquely saturated with more than two items, making interpretation of these

factecs almost meaningless. Hence, the results would indicate that the
N,

"eigenfalue greater than unity" rule led to overextraction in both models.

The more viable three-factor solutions also yielded very similar results,

suggesting that either method might yield an acceptable factor solution for

the data at hand. However, these analyses illustrate that the magnitudes of

the structure coefficients may be impacted upon by the choice of extraction

method. In the present example, using an item saliency criterion of 1.301,

I s
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the researcher would interpret seven more items with PCA than with PAF.

Thus, the choice of CFA or PCA is largely unimportant in terms of the

models' abilities to produce factor structures, but may lead to differences in

interpretation of results. However, the data employed in the present analysis

may not be typical of data encountered in educational research. Despite the

problems associated with the size of the sample and to some extent the number

of variables in the set, the variables' communalities were relatively high,

which may have accounted for the similarity of results across the two methods.

When employing a data set with low variable communalities, the researcher

is generally advised to use CFA over PCA. However, it might be questionable

whether the researcher should use Any type of factor analytic technique if a

substantial number of the variables have low communalities. Communalities

provided lower-bound estimates of the reliability of the variables (Cattell,

1978). Thus, if many of these variables have low communalities, the integrity

of the instrument(s) being used is already at stake, and rather than

representing viable constructs, the resulting factors are likely to be no more

than mathematical artifacts.

Generally, CFA is the safer of the two techniques. This is especially

true in cases in which there are only a few variables or in which variable

communalities are poor. Nevertheless, the researcher would be amiss to

blindly employ CFA without examining the variable communalities. Despite the

fact that the two methods generally yield very similar results, "common

factor analysis provides a fail-safe procedure in terms of more accurately

reflecting the population factor pattern because it gives accurate results

when component analysis produces biased results as well as when both methods

produce reasonably accurate results" (Snook & Gorsuch, 1989, p. 153).
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Table 1
Hypothetical Data Set for Factor Analysis Example

CASE ITEM1 ITEM2 ITEM3 ITEM4 ITEM5 ITEM6 ITEM7 ITEM8 ITEM9 ITEM10

1 2 1 1 1 2 1 1 1 2 1

2 2 2 2 2 1 2 2 1 2 2

3 2 1 2 1 2 1 2 1 2 1

4 1 1 2 1 1 2 1 1 1 2

5 2 1 2 1 2 1 2 1 2 2

6 1 2 2 2 2 1 2 2 2 2

7 2 1 2 1 2 1 2 2 2 2

8 2 1 1 1 1 2 1 1 2 1

9 2 1 2 2 2 2 1 1 1 2

10 2 1 2 1 2 2 1 2 2 2

11 2 1 2 1 2 2 1 2 2 2

12 1 1 1 1 1 2 1 1 1 2

13 2 1 2 1 2 1 2 1 2 2

14 2 1 2 1 1 2 1 1 1 2

15 2 1 2 1 2 1 2 1 2 2

16 2 1 1 2 2 1 2 1 2 2

17 2 1 2 2 1 2 1 2 2 2

18 1 1 1 2 1 2 1 1 1 2

19 2 2 2 2 2 2 1 2 2 2

29 1 1 2 1 1 2 1 2 1 2

Table 2
Inter-Item Correlation !or Table 1 Data

ITEM1

ITEM2 -.08085

ITEM3 .20000

ITEM4 -.06052

ITEM5 .47140

ITEM6 -.23570

ITEM7 .23570

ITEN8 -.06052

ITEM9 .62994

ITEM10 -.24254

ITEM2

.24254

.57248

.05717

.05717

.22866

.27890

.27501

.17647

ITEM3

-.06052
.23570

.00000

.23570

.42366

.12599

.40423

ITEM4

-.04280
.17118

.04280

.12088

.02288

.30826

ITEM5

-.66667
.45833

.17118

.57907

-.05717

ITEM6

-.79167
.17118

-.53452
.22866

ITEM7

-.17118
.53452

.05717

ITEM8

.25163

.30826

ITEM9

-.27501
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Table 3

Factor Solution Matrix for Factor Analysis Examplel

FACTOR1 FACTOR2

ITEM1 .63649 -.09264

ITEM2 .12548 .71718

ITEM3 .23546 .59894

ITEM4 -.09758 .59066

ITEM5 .80878 .09956

ITEM6 -.83154 .21605

ITEM7 .76894 .10756

ITEM8 .02084 .56631

ITEM9 .84367 .13154

ITEM10 -.24024 .66871

'These factors were extracted using principal components method, and were

rotated to the varimax criterion.
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Table 4
Items Associated with Factors Across Two Ten-Factor Solutions,

Factor I

PCA extraction
Item (Struc. Coeff.)

PAY extrirtion
Item (Struc. Coeff.)

9 (.86930) 9 (.84517)

18 (.83911) 18 (.82333)

14 (.82799) 14 (.80383)

16 (.77404) 16 (.76097)

26 (.53371) 26 (.47375)

Factor II

PCA extraction
Item (Struc. Coeff.)

PAF Ottraction
Item (Struc. Coeff.)

6 ( .82072) 22 ( .77825)

22 ( .75780) 6 ( .69581)

13 (-.57330) 28 ( .53028)

24 ( .55490) 24 ( .48000)

28 ( .51589) 25 (-.42278)

Factor III
PCA extraction

Item (Struc. Coeff.)

PAF extraction
Item (Struc. Cceff.)

7 (.77423) 7 (.74430)

23 (.77226) 23 (.73915)

27 (.62846) 10 (.61223)

10 (.62814) 27 (.42985)

Factor IV

PCA extraction PAF extraction

Item (Struc. Coeff.) Item (Struc. Coeff.)

8 (.70444) 5 (.78667)

5 (.66238) 8 (.48972)

20 (.54554) 20 (.48163)

Factor V

PCA extraction PAF extraction

Item (Struc. Coeff.) Item (Struc. Coeff.)

25 (.70828) 11 (.59110)

19 (.63434) 17 (.56193)

17 (.60123) 19 (.43543)
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Factor VI

PCA extraction
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PAF extraction

Item (Struc. Coeff.) Item (Struc. Coeff.)

3 (.80552) 3 (.58259)

12 (.41247) 12 (.47724)

Factor VII

PCA extraction
Item (Struc. Coeff.)
11 (.78386)

1 (.54778)

PAT extraction
Item (Struc. Coeff.)

21 (.71080)

Factor VIII

PCA extraction PAT extraction

Item (Struc. Coeff.) Item (Struc. Coeff.)

21 (.83544) 15 (.83399)

Factor IX

PCA extraction
Item (Struc. Coeff.)
15 (.89427)

Factor X

PCA extraction

PAF extraction
Item (Struc. Coeff.)

2 (.59057)

4 (.46328)

PAF extraction

Item (Struc. Coeff.)
4 (.74118)

2 (.54477)

29 (.48707)

Item (Struc. Coeff.)
13 (.73277)

lItems are listed under each factor in descending

order of the absolute values of their factor structure

coefficients.
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Table 5
Principal Components Three-Factor Rotated Solution Matrix

FACTOR1 FACTOR2 FACTOR3

NYSELF1 .14288 -.52065* .17304

NYSELF2 .41299* .17433 .01133

MY5ELF3 .31451* .14906 -.00643

MY5ELF4 .30699* .08766 -.03429

MY5EL75 .02536 .66790* .13844

MYSELF6 .10650 .09884 .69682*

NYSELF7 .12625 .61145* -.09756

NYSELF8 -.12928 -.30911* .02487

MYSEL79 .83499* -.03698 -.10900

MYSELF10 .18936 -.75860* -.09147

MYSELF11 -.16907 .33500* -.11529

NYSELF12 .16244 -.02702 -.32851*

NYSELF13 -.07218 .22922 -.44816*

NYSELF14 .83174* -.13026 -.00943

MYSILF15 .24205* -.10032 -.00679

MYSELF16 .64798* -.04798 -.09800

MYSELF17 -.24436 -.50795* .26963

NYSELF18 .79585* -.02196 -.31655

MYSELF19 -.09399 -.25246 .32288*

MYSELF20 -.22954 .43853 .43989*

NYSELF21 -.08753 .18514 .36532*

NYSELF22 -.03275 -.01547 .80000*

MYSELF23 .19866 .65412* .22517

MYSELF24 -.28917 -.1230 .59293*

NYSELF25 .07943 -.43193 .47359*

MYSELF26 .59723* -.22852 -.33556

NYSELF2, -.03055 .51746* -.03223

MYSELF28 .28482 .17814 -.58234*

MYSELF29 -.02016 .37165* -6860

Note: Starred values indicate the factor with which the item is most highly

correlated.
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Table 6

Principal Axis Three-Factor Solution Matrix

FACTOR1 FACTOR2 FACTOR3

MYSELF1 .09660 -.46131* .13520

MYSELF2 .31552* .13943 -.01636

NYSELF3 .24243* .11808 -.02390

MYSELF4 .23112* .06110 -.04882

MYSELF5 .00871 .60715* .11227

MYSELF6 .05638 .08050 .62719*

MYSELF7 .10974 .55560* -.09600

NYSELF8 -.11300 -.26093* .02463

MYSELF9 .83380* -.03624 -.08566

MYSELF10 .17546 -.74746* -.08782

MYSELF11 -.12437 .27625* -.07385

MYSELF12 .14578 -.02774 -.26842*

MYSELF13 -.02534 .19659 -.35905*

MYSELF14 .81483* -.13213 .00375

MYSELF15 .18976* -.08857 -.01629

MYSELF16 .57658* -.04487 -.11001

MYSELF17 -.22177 -.45467* .24037

MYSELF18 .80470* -.01779 -.30109

MYSELF19 -.09070 -.21178 .25972*

NYSELF20 -.21556 .39585 .40198*

MYSELF21 -.10509 .15187 .28572*

NYSELF22 -.04702 -.02125 .78626*

MYSELF23 .17001 .61020* .20555

MYSELF24 -.28994 -.11789 .53214*

MYSELF25 .04221 -.39546 .41046*

MYSELF26 .54865* -.21093 -.31670

NYSELF27 -.02054 .45023* -.02123

NYSELF28 .27635 .16718 -.52987*

MYSELF29 -.04701 .31418* .29613

Note: Starred values indicate the factor with which the item is most highly

correlated.


